Journal of Hill Agriculture

Volume 4, No. 1 Jan - June, 2013

Indian Society of Hill Agriculture,
G.B. Pant University of Agriculture and Technology,
Pantnagar, Distt Udham Singh Nagar, Uttarakhand – 263 145 (INDIA)
Website: www.ishaindia.in
Journal of Hill Agriculture (JHA) is an international journal and an official publication of Indian Society of Hill Agriculture (ISHA). It publishes the original research in all branches of agriculture and allied science that is of primary interest to the agricultural development, especially in hill and mountain regions of the world. The publication is open to the members of Indian Society of Hill Agriculture but it also accepts papers from non-members if all authors become the annual/life member when a paper is submitted / accepted for publication. The journal publishes various types of articles, i.e. (i) Strategy / Policy paper (exclusively by invitation from the personalities of eminence), (ii) Review papers, (iii) Research papers and (iv) Short communications. The manuscripts may be submitted through e-mail to editorinchiefjha@gmail.com or by online submission through ISHA’s website www.ishaindia.in or www.indianjournals.com.

For print version of journal of hill agriculture, subscribers may write to the editor-in-chief (JHA) and the online version may be accessed through www.indianjournals.com

Editor-in-Chief
Dr SK Sharma, GBPUAT, Pantnagar, INDIA (editorinchiefjha@gmail.com)

Associate Editor (s)
Dr KC Sharma, CSKHPKVV, Kullu, Himachal Pradesh, INDIA
Dr Birendra Prasad, GBPUAT, Pantnagar, INDIA

Associate Editor & Business Manager
Dr AK Pandey, GBPUAT, Pantnagar, INDIA (businessmanagerjha@gmail.com)

EDITORIAL BOARD (2013)

- Dr Ajay Gupta, SKUAST, Jammu, INDIA
- Dr Amit Jasrotia, SKUAST, Jammu, INDIA
- Dr Asgar Ebadollahi, Ardabil, IRAN
- Dr Bijayalaxmi Mohanty, National Univ of SINGAPORE
- Dr Davide Spadaro, Univ of Torino, ITALY
- Dr Gulzar Singh Sanga, SKUAST(K) Anantnag, INDIA
- Dr J P Sharma, SKUAST(J) Jammu, INDIA
- Dr Prakash Bakshi, SKUAST Jammu, INDIA
- Dr Rakesh Sharma, Univ of Hort. & Fty. Solan, HP, INDIA
- Dr Shashi Shah, IGNOU, New Delhi, INDIA
- Dr SK Maurya, GBPUAT, Pantnagar, INDIA
- Dr VR Karoshi, Addis Ababa, ETHIOPIA
- Dr Sucheta Singh, Haridwar, INDIA
- Dr Udit Kumar, RAU, Pusa, Samastipur, Bihar, INDIA
- Dr Alkesh Kandoria, PSCST, Chandigarh, INDIA
- Dr Anchal Dass, IAARI, New Delhi, INDIA
- Dr Ashok Thakur, Univ of Hort. & Fty. Solan, HP, INDIA
- Dr BM Pandey, VPKAS, Almora, Uttarakhand, INDIA
- Dr HSR Kotturi, Univ Central Oklahoma, USA
- Dr Lalaiswari Prasad Ray, CAU, Meghalaya, INDIA
- Dr M Shakila Banu, Coimbatore, INDIA
- Dr Rajesh Kaushal, CSWIRTI, Dehradun, INDIA
- Dr Rakefet David-Schwartz, Volcani Center, ISRAEL
- Dr Rashmi Yadav, NBPGRI, New Delhi, INDIA
- Dr Sushil K Sharma, DSR, Indore, INDIA
- Dr VP Zambare, SDSMT, South Dakota, USA
- Dr Yun Kong, Beijing University of Agriculture, CHINA
- Dr Tsering Stobdan, DIHAR, Leh (INDIA)
- Dr Sanjai Kumar Srivastava, Pantnagar, INDIA
- Dr VP Zambare, SDSMT, South Dakota, USA
- Dr Yun Kong, Beijing University of Agriculture, CHINA
- Dr Tsering Stobdan, DIHAR, Leh (INDIA)
- Dr Sanjai Kumar Srivastava, Pantnagar, INDIA

For any queries pertaining to Indian Society of Hill Agriculture (ISHA) or Journal of Hill Agriculture (JHA) please write to Secretary / Editor-in-Chief (JHA), Indian Society of Hill Agriculture Secretariat, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 249 199, India

Phone: +91 9412962535, 9412463923 E mail: editorinchiefjha@gmail.com, businessmanagerjha@gmail.com

URL : www.ishaindia.in
CONTENTS

Baculovirus biopesticides - an ecofriendly approach for insect-pest management 1-7
DINESH RAI • GEETA SHARMA • AK PANDEY

Morphological variability pattern of Sri Lankan weedy rice - an ecological appraisal 8-15
APT SUBHASI • DISNA RATNASEKERA • UIP PERERA

Standardization of recipe for the preparation of dried wild pomegranate (anardana)-long gourd appetizer 16-21
MM BHAT • NSTHAKUR • RAKESH SHARMA

Pollination studies in some promising plum cultivars under mid hills of Uttarakhand 22-27
ABDUL KAREEM • DC DIMRI

Effect of mulching on strawberry production under mid hill conditions of Uttarakhand 28-32
NN PATIL • VK RAO • DC DIMRI

Impact of front line demonstration on replacement of indigenous cultivar with improved variety of barnyard millet 33-38
AK SHARMA • SUCHETA SINGH

Seed germination and seedling growth of wheat and barley on influenced by the allelopathic effect of walnut (Juglans regia L.) leaf extracts under mid hills of Uttarakhand agri-silvi system 39-43
BIRENDRA PRASAD • ABHISHEK BAHUGUNA • RAM JI MAURYA • SANDHYA BAHUGUNA

Correlation and path coefficient analysis of yield and yield components of Indian mustard (Brassica juncea L.) 44-46
SHWETA

Genetic variability study in bacterial wilt resistant F6 progenies of tomato (Solanum lycopersicum L.) 47-49
SANJAY CHADHA • AMIT BHUSHAN

Physico-chemical characteristics of buransh (Rhododendron arboreum) - a nutritious and edible flower 50-52
SN SOLANKI • AK HURIA • CS CHOPRA

Acridity reduction and value addition of elephant foot yam grown in Bilaspur district of Himachal Pradesh 53-55
RAVINDER SINGH • YS DHALIWAL • REENA KAUSHAL

Response of bio-fertilizers and NPK levels on the growth and yield of garlic in north western Himalayas 56-59
KC SHARMA • LK SHARMA • AK SHARMA • VINOD SHARMA

Guidelines for authors i
Common abbreviations used in JHA iii
Abbreviations used for citing references iii
Referees of JHA 2013 Vol 4(1) v
Copyright Transfer Statement vi
Membership of ISHA vii
Indian Society of Hill Agriculture (ISHA) was founded in 2010 having its secretariat at G.B. Pant University of Agriculture and Technology, Hill Campus, Ranichauri, Distt Tehri Garhwal, Uttarakhand, India with the main objective to cultivate and promote research, education and development of agriculture and allied branches of science with special emphasis on development of hill and mountain regions of the world.

OFFICE BEARERS

Chief Patron: Vice Chancellor, GBPUAT Pantnagar
President: Dr PS Bisht, Dean, Bharsar
Vice President(s): Dr AK Sharma, GBPUAT, Uttarakhand
Dr SK Thakur, CSKHPKV, Palampur, Himachal Pradesh
Dr VK Rao, GBPUAT, Uttarakhand
Dr PJ Handique, Guwahati, Assam
Dr MS Mir, Srinagar, Jammu and Kashmir
Secretary: Dr VK Yadav, GBPUAT, Uttarakhand
Joint Secretary: Dr Sanjeev Sharma, CPRI, Shimla
Dr Sunil Kumar, GBPUAT, Uttarakhand
Dr OC Sharma, CITH, Srinagar, Jammu and Kashmir
Dr Vinod K Sharma, GBPUAT, Uttarakhand
Dr Mayank Rai, CAU, Manipur
Editor-in-Chief, J Hill Ag: Dr Satish K Sharma, GBPUAT, Uttarakhand
Associate Editor: Dr KC Sharma, CSKHPKV, Kullu, Himachal Pradesh
Treasurer: Dr Chandra Dev, GBPUAT, Uttarakhand

INTERNATIONAL ADVISORY BOARD

Members from India
Dr Mangla Rai, Former, President NAAS and Former Secretary DARE, Govt. of India
Dr P L Gautam, Former, Chairperson, PPVIRA, Govt. of India
Dr Anwar Alam, Former Vice Chancellor, SKUAST(K), Srinagar, J&K
Dr KM Bajarbaruah, Vice Chancellor, AAU, Jorhat, Assam
Dr KR Dhiman, Former Vice Chancellor, Dr YSPUHF, Solan, HP
Dr Bhag Mal, Former South Asia Coordinator, Biodiversity International, New Delhi

Members from Abroad
Dr JDH Keatinge, Director General, AVRDC, World Vegetable Centre, Taiwan
Dr Md. Yousuf Mian, Director General, BARI, Gazipur, Bangladesh
Dr C Kole, Clemson University, South Carolina, USA
Prof (Dr) FG Schroeder, Dresdan, Germany
Dr G Paliyat, University of Guelph, Ontario, Canada
Dr Ramesh Thakur, Michigan Technical University, Houghton, USA

EXECUTIVE COUNCILLORS

Dr AK Singh, Banaras Hindu University, Varanasi, Uttar Pradesh
Dr AK Singh, GBPUAT, Uttarakhand
Dr BL Attri, CITH (ICAR), Mukteshwar, Uttarakhand
Dr SP Uniyal, GBPUAT, Uttarakhand
Dr Vandana A Kumar, GBPUAT, Uttarakhand
Dr VK Joshi, Dr YSPUHF, Solan, Himachal Pradesh
Dr VK Sah, GBPUAT, Uttarakhand
Dr VK Wali, SKUAST (J), Jammu and Kashmir
Baculovirus biopesticides - an ecofriendly approach for insect-pest management

DINESH RAI • GEETA SHARMA • AK PANDEY
Received: March 5, 2013; Revised: April 28, 2013; Accepted: May 10, 2013

ABSTRACT Chemical pest control agents, though extensively used in all countries of the world, have been widely regarded as ecologically unacceptable. Therefore, there is the increased social pressure to replace them gradually with biopesticides which are safe to human and non-target organisms. At present, the world market for microbial pesticides is in excess of US $ 125 million per annum which is still less than 1 % of the total global market for agrochemical crop protection of $ 20-25 billion. Baculoviruses pesticides are ideal tools in integrated pest management programs as they are usually highly specific to their host insects; thus, they do not affect other arthropods including pest predators and parasitoids. Effective public extension services and farmer education toward application of biopesticides are much needed to expand the use of these products worldwide.

KEYWORDS Baculovirus, biopesticides, nuclear polyhedrosis virus, Granulovirus, IPM

INTRODUCTION Biopesticide is a formulation made from naturally occurring substances that controls pests by non toxic mechanisms in eco-friendly manner, hence gaining importance all over the world. Biopesticides may be derived from animals (e.g. nematodes), plants (Chrysanthemum, Azadirachta) and micro - organisms (e.g. Bacillus thuringiensis, Trichoderma sp., Nucleopolyhedrosis virus), and include living organisms (natural enemies), their products (phytochemicals, microbial products) or byproducts (semiochemicals) which can be used for the management of pests injurious (Mazid et al. 2011, Sharma and Malik 2012). The time-tested indigenous technical knowledge (ITK) of using natural materials for the control of pests has been very effective; but due to the introduction and uses of chemical pesticides many ITKs have been forgotten. Biopesticides pose less threat to the environment and human health. They are generally less toxic than chemical pesticides, often target specific, have little or no residual effects and have acceptability for use in organic farming.

Biopesticides fall into three major categories: plant-incorporated protectants (PIPs), biochemical, and microbial pesticides. Microbial pesticides consist of microorganisms (bacteria, fungi, viruses, or protozoans) as the active-ingredient, and they have been successfully used in controlling insect pests. Though, each microbial active-ingredient is relatively specific for its target pest, microbial pesticides can control many different kinds of pests. One of the most widely used microbial pesticides is Bacillus thuringiensis, popularly known as Bt. The bacterium produces crystalline proteins and specifically kills one or a few related insect species. Binding of the Bt crystalline protein to insect gut receptor determines the target insect species. Biochemical pesticides are naturally occurring substances that control pests by non-toxic mechanisms. Such examples are insect sex-pheromones (that interfere with their mating and population build-up), various scented extracts (that attract insect pests to traps) and some vegetable oils (Singh et al. 2012). Plant-incorporated protectants include substances that are produced naturally on genetic modification of plants. Such examples are incorporation of Bt gene, protease inhibitor, lectins, chitinase etc. into the plant genome so that the transgenic plant synthesizes its own...
Morphological variability pattern of Sri Lankan weedy rice - an ecological appraisal

APT SUBHASHI • DISNA RATNASEKERA • UIP PERERA

ABSTRACT
Weedy rice (Oryza sativa L. f. spontanea) is one of the most widespread and problematic weeds in rice ecosystems with diverse characteristics. The study was carried out to determine the morphological variation pattern of the weedy rice populations in relation to agro-ecology of Sri Lanka. Twelve weedy rice populations collected from infested locations in Ampara, Matara and Kurunegala districts representing dry, wet and intermediate zones were evaluated in a common garden for ten quantitative traits to estimate the phenotypic diversity. The diversity level of weedy rice populations was high as revealed by Shannon-Weaver Index. Dry zone of Sri Lanka has more diversity hotspots of weedy rice. Analysis of variance revealed significant differences (p< 0.05) among populations than within populations implying the presence of substantial amount of genetic variability. Seed shattering percentage exhibited the highest variation while thousand seed weight showed the lowest variation explained by coefficient variation (CV). Principal component analysis indicated that the first two components accounted for 72.3% of the total variation and number of tillers, plant height (cm) at both seedling and heading stages, panicle length (cm), seed shattering % and the thousand seed weight (g) were the major determinants of genetic diversity in the weedy rice collection. Clustering identified two clusters and they were not associated with the geographical distribution of the populations. All the analysis based on plant morphology suggested that weedy rice in Sri Lanka has great variability but no association with ecology of the country.

KEYWORDS
Oryza sativa f. spontanea, diversity, genetic resources, coefficient variation, PCA

INTRODUCTION
Rice (Oryza sativa L.) is one of the major staple crops in the world and is particularly important in Asia, where approximately 90% of world’s rice is produced and consumed (Khush 2004, Zeigler and Barclay 2008). It is the staple food of Sri Lankans, providing 45% of total calorie requirement and 40% of total protein requirement of an average Sri Lankan diet (Census and Statistics 2007). It occupies 17.6% (0.7 million ha) of the total agricultural land area in the island (Agstat 2008), contributing 14.2% to total agricultural GDP of the island (Census and Statistics 2009, Central Bank 2009). Rice cultivation is distributed in almost all agro-ecological zones except for elevations above 2000m (Gunatilaka and Somasiri 1995). According to the spatial distribution of rainfall, Sri Lanka has traditionally been generalized into three climatic zones in terms of Wet Zone (rainfall >2500mm), Dry zone (rainfall <1750mm) and Intermediate zone (between 1750 to 2500 mm) (Punyawardena et al. 2003). The year is divided into two seasons coinciding with the monsoon rain as “Maha” (northeast monsoon falls during December to February) and “Yala” (southwest monsoon falls during May to September) and rice lands are cultivated in these two distinct seasons. Cultivars used in ancient time, were entirely traditional and most cultivars were tall with droopy leaves which may have facilitated the direct-seeded rice crop to overcome heavy weed infestation with trivial yield (Senadhira et al. 1980). The current rice production model with a few high-yielding modern varieties over a massive area has significantly improved the food security in the country, but has...
Standardization of recipe for the preparation of dried wild pomegranate (anardana)-long gourd appetizer

MM BHAT • NS THAKUR • RAKESH SHARMA
Received: Jan 05, 2013; Revised: May 15, 2013; Accepted: June 10, 2013

ABSTRACT Studies were undertaken to prepare a palatable and nutritious appetizer from dried wild pomegranate in combination with long gourd juice. Different combinations of dried pomegranate powder (6-12g), long gourd juice (13-19g) with herbs and spices were tried for the standardization of product. Out of 7 recipes, the best recipe (R4) consisting of 9g wild pomegranate powder, 16g long gourd juice, 0.4g mint leaves powder, 0.4g ginger powder, 0.5g common salt, 1.5g black salt powder, 41.50g sugar powder, 0.25g cumin powder, 0.1g cardamom powder, 0.4g black pepper powder and 0.02g carmozine was standardized for the preparation of appetizers from freshly dried as well as 6 months stored arils. The appetizers prepared from the best recipe had appealing colour, body, flavour and good sugar: acid blend. The quality of the appetizers prepared from 6 months stored arils was comparable with that of freshly prepared; however negligible changes in sensory and chemical characteristics were found. The sale price for 700 ml bottle of appetizer was worked out to be very low as compared to the market price of any fruit squash available in the market.

KEY WORDS Wild pomegranate, dried arils, appetizer, long gourd, sensory evaluation

INTRODUCTION Wild pomegranate (Punica granatum L.) is one of the important wild fruit with great economic importance because of its high acidic nature. It is widely distributed in drier and sub marginal land of mid hill region of outer Himalaya at an elevation of 900 to 1800 m above mean sea level. In India, it grows in the hilly slopes of Jammu and Kashmir, Himachal Pradesh and Uttarakhand. However, it is found growing wild in some parts of Solan, Sirmour, Mandi, Shimla, Kullu, Bilaspur and Chamba districts of Himachal Pradesh (Bhrot 1998).

The fruit is laxative, diuretic and allays thirst, its arils are used for curing vomiting, biliousness, sore throat, sore eye, brain diseases, spleen complaints, chest troubles, scabies, bronchitis, ear ache, liver and kidney disorders (Saxena et al. 1987). It also contains good amount of minerals like phosphorus, calcium, potassium and iron (Parmar and Kaushal 1982). Wild pomegranate is too acidic which cannot be used for table purpose but can be a good souring agent for use in chutneys, curries and other culinary preparations in dried form.

On the other hand, long gourd has also great therapeutical value. It is cardio tonic, laxative, diuretic, tonic to liver, antipyretic and wholesome to fetus (Kirtikar and Basu 1991, Rumezan et al. 2006).

Further, spice based beverages are gaining importance in the market for their consistency of flavour, aroma and stability in storage and presence of natural antioxidants which have carminative properties and aid digestion through stimulation of appetite (Griffin 1992, Sharma et al. 2002). Keeping this in view, the present investigation was undertaken to standardize palatable and acceptable wild pomegranate-long gourd appetizer.

MATERIALS AND METHODS
Pre-treatment and drying of arils
Wild pomegranate fruits were procured from Narag area of District Sirmour (HP) at proper maturity. The fruits were washed and the arils were extracted manually.
Pollination studies in some promising plum cultivars under mid hills of Uttarakhand

ABDUL KAREEM • DC DIMRI
Received: March 05, 2013; Revised: April 23, 2013; Accepted: April 28, 2013

ABSTRACT
Six plum cultivars were studied for their anthesis and pollen germination studies under mid hills of Uttarakhand. The opening of flowers (anthesis) commenced after 8 hrs, reached a peak between 12 hrs and 14 hrs, thereafter, the anthesis declined reaching to a minimum at 18 hrs. In different plum cultivars, anther dehiscence started from 10 hrs and continued up to 16 hrs and the maximum extent of anther dehiscence, i.e. peak time of anther dehiscence, was recorded at 14 hrs. So it can be logically concluded that the best time for collecting pollens was in between 12 to 14 hours of a day as there is a maximum anther dehiscence during this period. All the plum cultivars produced viable pollen with fairly good germination capability; even then most of the plum cultivars are self-unfruitful, indicating that there might be some other factors which are responsible for their unfruitfulness. This needs in depth study to identify the exact mechanism involve in unfruitfulness of the plum cultivars.

KEYWORDS
Chilling, anthesis, pollen dehiscence, receptivity, pollen germination, pollen morphology, self-incompatibility

INTRODUCTION
Plum belongs to the genus Prunus of the sub-family Prunoideae and the family Rosaceae. Cultivated plums and Japanese plums (Prunus salicina Lindl.). Most of the Japanese cultivars are self-unfruitful and require cross-pollination to set satisfactory crop, but occasionally some cultivars like Santa Rosa and Methley set good crop with their own pollen and behave as a self-fruitful one (Carvalho et al. 1992). The unfruitfulness in plum cultivars is mainly due to unusual flower structure, poor pollen viability and germination and incomplete pollen tube growth, leading to premature and delayed pollination (Thompson and Liu 1973). So to understand its pollination behaviour and to know the mechanism involved in unfruitfulness in plum cultivars, it was considered desirable to undertake the present study.

MATERIALS AND METHODS
The present experiment was carried out at Horticultural Research Block of G.B. Pant University of Agriculture and Technology, Hill Campus, Ranichauri, Tehri Garhwal (Uttarakhand). The Research Block is situated at an elevation of 1950 m amsl, between 30°15' North latitude and 78°02' East longitude. The studies were conducted on 15-year old plum cultivars, viz. Methley, Santa Rosa, New Plum, First Plum, Ramgarh Maynard and Black Chamba. The trees were trained in a modified central leader system and uniform orchard management practices were followed. The experiment was laid out in Randomized Block Design (RBD) with four replications. One tree under each replication was used as unit per treatment. Observations on the following parameters were recorded periodically, to undertake studies on anthesis and pollen behaviour.

Time of anthesis
For recording the time of anthesis, two branches having uniform buds were tagged in four different directions of the tree in each cultivar. Each day the number of flowers opened, were recorded at an interval of 2 hrs starting from 8 hrs and continued till 18 hrs. The time of the
Effect of mulching on strawberry production under mid hill conditions of Uttarakhand

NN Patil • VK Rao • DC Dimri

ABSTRACT The field experiment conducted on strawberry (Fragaria x ananassa Duch.) cv. Chandler at Research Block of Department of Horticulture, College of Forestry and Hill Agriculture, GB Pant University of Agriculture and Technology, Hill Campus, Ranichauri, Tehri Garhwal, Uttarakhand during 2010-11 to study the effects of different mulching material on plant growth, yield and quality of strawberry cv. Chandler under mid hill condition. All the plant growth, yield and quality characters were superior with black polyethylene mulch followed by transparent polythene, paddy straw while, plants without mulch (control) resulted poor growth and yield.

KEYWORDS Strawberry, mulching, organic and inorganic mulches, growth, fruit yield

INTRODUCTION The cultivated strawberry (Fragaria x ananassa Duch.) is one of the important refreshing and delicious soft fruit of the world. In India it is cultivated to a limited extent in Uttar Pradesh, Himachal Pradesh, Madhya Pradesh, Uttarakhand, Maharashtra, Karnataka, Punjab and Haryana. In Uttarakhand, its area is confined to Udham Singh Nagar, Dehradun, and Nainital districts. Its cultivation especially in hilly areas of India has recently receiving great momentum with the large business houses establishing a number of agro-based outlets. There is a tremendous scope for its cultivation near cities and canning units where the fruits can be utilized immediately after harvest as strawberry is very perishable in nature.

The irrigated mid-hill region of Uttarakhand is well suited for strawberry and runner production. In the state, water is the single factor, which directly influences the yield of strawberry. Mulches also promote crop development, early harvest and increase yields. Mulching is commonly practiced in strawberry cultivation to keep the fruit clean and protect from its contact with soil to avoid fruit rot. It is amongst the few fruit crops, which give quicker and very high returns per unit area on the capital investments, as the crop is ready for harvesting within six months of planting and now due to several technological advances in its cultivation like introduction of day neutral varieties and protected cultivation. Strawberries remain available as fresh throughout the year (Sharma 2002). Therefore, considering the importance of different mulching in various crops, the present investigation was carried out to study the effect of different mulching material on growth, yield and quality of strawberry cv. Chandler.

MATERIALS AND METHODS The field experiment was conducted on strawberry (Fragaria x ananassa Duch.) cv. Chandler at Research Block of Department of Horticulture, College of Forestry and Hill Agriculture, GB Pant University of Agriculture and Technology, Hill Campus, Ranichauri, Tehri Garhwal, Uttarakhand during 2010-11. The experiment was laid out in randomized block design with three replications. There were total eight treatment of mulching materials viz., inorganic mulches viz. black polythene, transparent polythene, silver colour polythene, paper cutting waste, paddy straw, pine needles and dry leaves of Eupatorium adenophorum (Kalabansa). The strawberry runners of uniform size were transplanted on raised beds of 3.0 m × 1.2 m.
Impact of front line demonstration on replacement of indigenous cultivar with improved variety of barnyard millet

AK SHARMA • SUCHETA SINGH
Received: Jan 05, 2013; Revised: May 28, 2013; Accepted: June 10, 2013

ABSTRACT A study was conducted in villages of Pauri Garhwal district where demonstration on PRJ-1, a variety of barnyard millet, developed by GB Pant University of Agriculture and Technology, Hill Campus, Ranichauri and released in 2003 from SVRC (State Variety Release Committee) for cultivation in the Uttarakhand hills, was done. Exploratory research design was used for the study. In total 100 demonstrations were conducted in three years. Techno effectiveness was found to be very high, the variety was thus accepted by most of the farmers. Hence, it can be concluded that the seed production of improved variety of PRJ 1 of barnyard millet should be produced and popularized in the area for not only the sustainable production but for an economic and nutritional boon in the hill areas. Because, lesser known cereals (millets) are suitable for hilly conditions with minimum eternal inputs in a fragile ecosystem.

KEYWORDS Front line demonstrations, barnyard millet, variety replacement

INTRODUCTION Traditional farming is a sustainable way of life for livelihood in North-west Himalayan region. The lesser known cereals (barnyard millet, finger millet and foxtail millet) suitable for hilly conditions with minimum input are grown in fragile ecosystem. With bare minimum requirements and devoid of irrigation facilities, small and fragmented holdings are proclivities of common hill farmers. Moreover, green revolution technologies have hardly paid any impact in production/ productivity of regions. Local or indigenous varieties are being utilized in prevailing rainfed farming systems of Uttarakhand. Small millets, viz. barnyard millet, finger millet and foxtail millet are the main component of cropping sequence of the district. Barnyard millet is the fourth important crop of the district and covers 17925 ha area with 22767 tonne production and 12.70 q/ha productivity.

Barnyard millet is an old and adaptive crop of Uttarakhand and is commonly known as Jhangora or madira in the region. The grains of barnyard millets are eaten in various forms like rice preparation, puddings and during the fasting time. It is considered to be the important ingredient in baby and infant food preparations. Various traditional recipes are prepared in Garhwal region including famous old age preparation in food “Arse” from flour of barnyard millet. It is sometimes used as kheer in important religious occasions in Garhwal region.

A unique and old age traditional system of cropping pattern is followed in remote and inaccessible villages wherein, selected plots will be used in cultivation of barnyard millet and another for finger millet. Barnyard millet - wheat - finger millet - fallow is the most common two years crop rotation practices in the district. This system, called as Sar facilitates grazing of the animal in one check during winters. In whole, low intensive cropping system, resource poor farmers and rainfed situation lead to very low production as well as productivity per unit area/input. This dependency on natural factors of production restricts the growers to get the handsome returns of their produce. Keeping in view the inherent problems of district viz. fragmented or absentee land holdings, low productivity...
Seed germination and seedling growth of wheat and barley on influenced by the allelopathic effect of walnut (Juglans regia L.) leaf extracts under mid hills of Uttarakhand agri-silvi system

BIRENDBRA PRASAD • ABHISHEK BAHUGUNA • RAM JI MAURYA • SANDHYA BAHUGUNA
Received: April 2, 2013; Revised: May 28, 2013; Accepted: June 10, 2013

ABSTRACT A laboratory experiment was conducted to observe the effect of Juglans regia L. leaf extracts on germination and subsequent seedling growth of wheat (cv.VL-907) and barley (cv.PRB-502) under West Himalayan agri-silvi system. Eleven treatments comprised of distilled water (Control =0 %), 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % concentration of leaf extracts were employed. The effect of aqueous extracts was found inhibitive indicating a direct proportional relationship with concentration dependent manner on seed germination and subsequent seedling growth of wheat. Invariably there was a decrease in root, shoot as well as seedling length, fresh and dry weight of seedling and vigour index I and II with increasing walnut leaf extracts concentration on wheat. However, barley seed showed a considerable resistance against walnut leaf extract and no significant reduction and trends was observed for seed germination and subsequent seedling growth i.e. fresh and dry weight, vigour index I and II for different concentration of leaf extracts.

KEYWORDS Allelopathy, walnut leaf, germination, wheat, barley

INTRODUCTION

Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the production of chemical compounds that escape into the environment, Rice (1984). Allelochemicals are present in many types of plants and are released into the rhizosphere by a variety of mechanism, including decomposition of residues, volatilizations and root exudation. These chemicals are known to affect germination, growth, development, distribution and reproduction of a number of plant species, Inderjit and Malik (2002). However, the effect of these chemicals on other plants are known to be dependent principally upon the concentration as well as in combination, in which one or more of the substances are released into the environment.

The inhibitory effect of walnut on associated plant species is one of the oldest examples of allelopathy, which produce a non-toxic colorless chemical called hydrojuglone. Hydrojuglone is found in leaves, stem, fruit hulls, inner bark and roots. When exposed to the air or soil compounds, hydrojuglone is oxidized into the allelochemical juglone, which is highly toxic, Bertin et al. (2003). Rain washes juglone from the leaves and carries it into the soil. Thus, neighbouring plants of the walnut are affected by absorbing juglone through their roots, Rietveld
Correlation and path coefficient analysis of yield and yield components of Indian mustard (Brassica juncea L.)

SHWETA

Received: Sep 16, 2012, Revised: Mar 25, 2013, Accepted: Apr 15, 2013

ABSTRACT Character association among seed yield and its component traits was studied through phenotypic correlation coefficients and path analysis. Seed yield exhibited positive and significant association with plant height, number of primary branches per plant, number of secondary branches per plant, siliquae per plant, seeds per siliqua and 1000 seed weight. Path analysis revealed that characters viz., seed yield exhibited The highest positive direct effect on siliquae per plant followed by 1000 seed weight, seeds per siliqua, number of primary branches per plant, days to 50% flowering, days to maturity and plant height. Considering both, the correlation coefficients and path coefficients together, siliquae per plant, 1000 seed weight, seeds per siliqua, number of primary branches per plant and plant height emerged as important components of seed yield which should be given due importance during indirect selection criteria.

KEYWORDS Correlation, path analysis, Indian mustard

Indian mustard [Brassica juncea (L.) Czern and Coss] is an important rabi oilseed crop. Oleiferous Brassicas, collectively known as rapeseed-mustard are important oilseed crops of India. Among the four oleiferous Brassica species, major area is under Brassica juncea which contributes 80% of the total rapeseed-mustard production in the country.

SHWETA
Department of Genetics and Plant Breeding, CSA University of Agriculture and Technology, Kanpur, Uttar Pradesh – 208 001, India
E mail: shweta1805@gmail.com

The success of any breeding programme in general and improvement of specific trait through selection in particular, totally depends upon the variability present in the available germplasm of a particular crop. Main thrust in any crop improvement programme is to enhance yield. As an established fact, yield is a complex trait and is dependent on many other ancillary characters which are mostly inherited quantitatively. The characters which have high and positive correlation with yield can be used in the indirect selection for yield and as an alternate mode of selection for yield improvement.

Use of simple correlation analysis could not fully explain the relationship among the characters. Therefore, the path coefficient analysis has been used by many researchers for a more and complete determination of impact of independent variable on dependent one. The path coefficient analysis helps the breeders) to explain direct and indirect effects and hence has extensively been used in breeding work in different crop species by various researchers (Green 1980, Marinkovic 1992, Shalini et al. 2000, Ali et al. 2002). The objectives of this study were to estimate the relationship among yield components and best selection criteria for yield improvement in mustard.

In the present investigation one hundred three diverse genotypes of Indian mustard were grown in augmented design during the rabi 2008-09 and 2009-2010 at Regional Research Station, Saini, Kaushambi of C S Azad University of Agriculture and Technology, Kanpur. Each row 5 m long with row to row and plant to plant spacing of 45 cm and 20 cm, respectively. The standard agronomic practices were followed to raise the crop. Data were recorded on days to 50% flowering, days to maturity, plant height (cm), number of primary branches per plant, number of secondary branches per plant, siliquae per plant, seeds per siliqua, 1000 seed weight (g) and seed yield per plant (g). Correlation coefficient were calculated as per the methods suggested by Wright (1921)
Genetic variability study in bacterial wilt resistant F₆ progenies of tomato (Solanum lycopersicum L.)

SANJAY CHADHA • AMIT BHUSHAN

ABSTRACT Twelve bacterial wilt resistant F₆ progenies of tomato along with three bacterial wilt resistant standard checks were studied for the extent of genetic variability with respect to fruit yield and contributing traits in mid hill conditions of Himachal Pradesh. Analysis of variance indicated sufficient amount of variability among the genotypes for all the traits. It was observed that the estimates of PCV, GCV, heritability and genetic advance were of the same nature for majority of traits. All the four estimates were high for total and marketable fruits per plant, moderate for gross yield per plant and low for days to 50 per cent flowering and pericarp thickness. For rest of the traits also, at least three components of variability showed same nature. This implies that the traits total fruits per plant, marketable fruits per plant and locules per fruit followed by plant height, average fruit weight and marketable yield can be improved through selection based on phenotypic performance. Whereas, recombination breeding will prove effective in improving the traits viz., days to 50 per cent flowering, days to first harvest, pericarp thickness, total soluble solids and duration of fruit harvest.

KEYWORDS Tomato, variability, heritability, genetic advance

Tomato is one of the most popular and widely grown vegetable crops of commerce in the world, ranking second in importance to potato but tops the list of processed vegetables (Choudhary 1996). Tomato is extensively grown during summer-rainy season in hills. The summer-rainy season crop grown in lower and mid-hill pockets of the north-western hills fetches high prices being off-season crop of the plains. Bacterial wilt is one of the most important constraints in humid tropical and sub-tropical areas causing huge losses. Hence, identification and development of new improved disease resistant cultivars is very important to further boost up the production and productivity of the crop in wilt prone areas of Himachal Pradesh. In order to select superior genotypes, the knowledge regarding the extent of genetic variability with respect to fruit yield and component traits is highly desirable. Therefore, the present study was undertaken on 12 bacterial wilt resistant F₆ progenies of tomato along with three standard checks to measure the extent of genetic variability.

The experimental material comprised 12 bacterial wilt resistant F₆ progenies of tomato viz., (BRH-2 × SUN 7611)-1-1-2-1, (BRH-2 × SUN 7611)-1-1-2-2, (BRH-2 × SUN 7611)-1-3-2-1, (BRH-2 × SUN 7611)-1-3-2-2, (SUN 7721 × Hawaii 7998)-3-2-1-2, (SUN 7721 × Hawaii 7998)-3-2-1-3, (Hawaii 7998 × SUN 7611)-2-2-1-2, (Hawaii 7998 × SUN 7611)-5-2-1-1, (BT 18 × SUN 7611)-5-1-8-1, (BT 18 × SUN 7611)-6-2-1-2, (BT 18 × SUN 7611)-6-3-1-B and (BT 18 × SUN 7611)-7-1-2-2 along with three bacterial wilt resistant standard checks [Palam Pink (Determinate), Palam Pride (Indeterminate) and SUN 7711 (Hybrid)] and two susceptible checks (Roma and Solan Gola). These were grown in randomized block design at Vegetable Research Farm of CSK HPKV, Palampur (Himachal Pradesh) during 2008 following recommended package of practices. Susceptible checks were planted as every 10th row to ascertain the presence/severity of disease in the experimental field. Ten competitive plants from each genotype were used to record observations on the traits, plant survival (%), days to 50% flowering, days to first

Received: Mar 05, 2013; Revised: Apr 15, 2013; Accepted: Apr 28, 2013

More information available in the source document.

Chadha Sanjay (✉)
E-mail: schadha_113@yahoo.co.in
Physico-chemical characteristics of buransh (Rhododendron arboreum) - a nutritious and edible flower

SN SOLANKI • AK HURIA • CS CHOPRA

ABSTRACT The present investigation was carried out in the Post Harvest Laboratory of the Department of Food Science and Technology, GB Pant University of Agriculture and Technology, Pantnagar. Rhododendron arboreum is also known as Buransh. It is very attractive edible flower. The flowers used in the present study were obtained from Bhimtal town of Nainital district (Uttarakhand). The colour of Buransh petals was red. Average weight of inflorescence was 24.01 ± 3.92g and 15 ± 2.18 flowers were present in an inflorescence. Length and width of petals were 5.13 ± 0.45 and 5.88 ± 0.64 cm, respectively. The inflorescence contained 67.63 ± 3.37 % edible portion. Buransh petals contained 89.28 ± 0.56, 8.5 ± 1.60, 2.69 ± 0.12, 0.80 ± 0.03 and 0.68 ± 0.04 %, moisture, TSS, acid, ash and pectin, respectively. The respective content of reducing, non-reducing and total sugars was 5.16 ± 0.09, 5.46 ± 0.79 and 10.91 ± 0.86 %. Petals contained 250.5 ± 3.5 mg/100g ascorbic acid and 214.35 ± 3.56 mg/100g anthocyanins.

KEYWORDS Rhododendron arboreum, edible flower, compositional aspects

Rhododendron means “rose tree”. The name Rhododendron came from the Greek word rhodon means a rose and dendron means a tree. The family of Rhododendron is Ericaceae. Rhododendrons were originally found in Nepal but they are also distributed in the mountain tracts of Europe, Asia, Malaya, and North America. The Rhododendron arboreum is common in the temperate Himalayas, from Indus to Bhutan between altitudes of 4000 to 11000 ft, in Khasi hills between 4000 to 6000 ft, and also in Manipur (Chopra et al. 1965). Today there are over 1,000 species of Rhododendrons. It is the ‘National Flower’ of Nepal and the ‘State Flower’ of Sikkim in India, West Virginia and Washington in the United States (Anon 2008).

Some species of Rhododendron are frequently cultivated for ornamental purposes all over the world, but in India Rhododendron arboreum is the only one that seems to be cultivated in some hill stations and that too very rarely (Chopra et al. 1965). Rhododendron arboreum is locally known as Buransh in Garhwal, Brons in Almora, Bras in Kumaon, Bhorans and Ghonas in Nepal, Billi in Nilgiris, Arawal in Punjab and Allingi in Tamil. Deep red or pale pink flowers have sweetish sour taste (Purohit 1960). Rhododendron arboreum flowers possess pharmacological and anticancer properties (Dhar et al. 1968). The red blooms of Buransh flowers are supposed to be good for the heart patients. Traditionally, the petals of the flowers are used in the preparation of chutney by the hill people. At home scale, small quantities of juice extracted from flower is used for preparing jelly and squash (Vyas et al. 1989) and syrup (Bhatt et al. 2007). Rhododendron lapponicum leaves and flowering tops can be infused and drunk as tea. White flowers of Rhododendrons can also be used for the preparation of jelly (MacNicol 1967). The present work was
Acridity reduction and value addition of elephant foot yam grown in Bilaspur district of Himachal Pradesh

RAVINDER SINGH • YS DHALIWAL • REENA KAUSHAL
Received: March 8, 2013; Revised: April 10, 2013; Accepted: April 26, 2013

ABSTRACT Different methods were tried to reduce the acridity and make different products of acrid local variety of zimikand commercially grown in Bilaspur district of Himachal Pradesh. Among different treatments, the lowest oxalate content was observed when cubes were treated overnight in 5 % sodium bicarbonate solution followed by further overnight dip in 2.5 % citric acid solution and fried to a golden brown colour. Zimikand products like pickle, chips and flakes were also prepared and evaluated organoleptically for acridity, colour, flavour and texture by using 9 point hedonic scale. The products were ‘liked very much’ for their overall acceptability.

KEYWORDS Zimikand, acridity, elephant foot yam, pickles, flakes

The corms and leaves of most cultivars of the edible aroids are consumed in various parts of the world and form staple diet in some regions of Africa. The larger proportion of yam produced annually is marketed as fresh corms. Only a small fraction goes to market in processed forms (Kumar 2007).

Elephant foot yam (Amorphophallus campanulatus L.) locally called zimikand is cultivated in large scale in those areas of district Bilaspur which are prone to monkey menace as it is not attacked by them. It is also low input demanding crop but acridity is one of the major problem in local cultivated variety (Anon 2009). It means if eaten raw, it cause swelling of the mouth, tongue, throat and feel as if hundreds of small needles are digging into them. The acridity is due to the dual action of the sharp raphides of calcium oxalate (Sen and Choudhary 2003). On chewing the corms, the stinging effect felt on the lips and tongue is accompanied by increase in salivation, slight hearing impairment and headache (Sakai 1979). Hence, zimikand is not used in its raw form and is always consumed by thoroughly cooking/processing the corms as calcium oxalate which causes acridity is easily broken down by these culinary methods. The climate of district Bilaspur of Himachal Pradesh is very much suitable for growing this crop and the local farmers reap a bumper harvest during the season. But the presence of acridity limits the use of zimikand both as food as well as feed. As compared to the commercial variety, the local variety is highly acrid in taste and is not utilized at the rate it is produced. The farmers are unable to market their produce for consumption purpose and are forced to sell it at throw away price. The local people utilize it mainly for preparation of curry after preliminary processing but the acrid taste still remains a problem. The traditional processing in some areas involves boiling of cut corms which reduces its nutritional value. Hence, an attempt was made in the present study to reduce the level of acridity in the local variety using simple processing methods.

The different methods in the literature for removing acridity in family Araceae uses concentrated acids and alkali like hydrogen peroxide, hydrochloric acid and sodium hydroxide that are highly concentrated, pungent and require
Response of bio-fertilizers and NPK levels on the growth and yield of garlic in north western Himalayas

KC SHARMA • LK SHARMA • AK SHARMA • VINOD SHARMA
Received: March 8, 2013; Revised: April 10, 2013; Accepted: April 26, 2013

ABSTRACT Garlic is the second most widely used cultivated Allium after onion and has long been recognized all over the world as valuable spice for foods and a popular remedy for various ailments and physiological disorders. Indiscriminate use of synthetic fertilizers imparts reduced nutritive value and sensory parameters, whereas integration of organic amendments and microbial inoculants reduces the NPK doses and improves the soil health and plant nutrient availability resulting in higher crop yields besides being environmentally safe. On farm trials were conducted during rabi seasons of 2009 and 2010 to study the effect of bio-fertilizers (Azotobacter and PSB) in combination with four levels of NPK fertilizers (0, 50, 75 & 100 % NPK) on growth and yield of garlic cv. ‘GHC-1’ in Kullu district of Himachal Pradesh. The application of bio-fertilizers either alone or in combination resulted in significant improvement in plant height, number of cloves/bulb, mean bulb weight and bulb yield and benefit cost ratio. The increased bulb yield was to the tune of 20.44 %, 15.67 % and 10.43 % with the combination of bio-fertilizers (Azotobacter + PSB), PSB and Azotobacter, respectively over un-inoculated control. The application of NPK fertilizers significantly increased all the growth and yield parameters along with bulb yield with each incremental level of NPK. The interaction effects showed that bulb yield and benefit cost ratio increased in a linear manner with the application of bio-inoculants integrated with increasing levels of NPK fertilizers. The highest yield (188 q/ha) was recorded when the plots were supplemented with 100 % NPK + clove treatment of both the inoculants. Furthermore, it was observed that the garlic yield (187 q/ha) obtained with the application of 75 % NPK +Azotobacter +PSB was at par with that of recommended NPK (100 %), thus resulting in net saving of 25 % NPK fertilizers with maximum benefit cost ratio (4.05).

KEYWORDS Garlic, biofertilizers, NPK, growth, yield

Garlic is the second most widely used cultivated Allium after onion and has long been recognized all over the world as valuable spice for foods and a popular remedy for various ailments and physiological disorders. It is rich source of carbohydrates, proteins, phosphorus and ascorbic. The crop is gaining popularity in Himachal Pradesh as an important cash crop resulting in high economic returns to the growers. The production and productivity of garlic in India is very low as compared to many countries. Unawareness of the farmers about improved technology like high yielding varieties, integrated nutrient management and proper plant protection measures are the main reasons for its low production.

Indiscriminate use of synthetic fertilizers imparts reduced nutritive value and sensory parameters, whereas integration of organic amendments and bio-fertilizers reduces the NPK doses and improves the soil health and plant nutrient availability resulting in higher crop yields besides being environmentally safe. Azotobacter chroococcum, a non-symbiotic bacteria is the potential bio-fertilizer and has the capability for contribution nitrogen to a number of non-legumes by tapping atmospheric nitrogen

SHARMA KC¹ • SHARMA LK¹ • SHARMA AK² • SHARMA VINOD¹
¹Krishi Vigyan Kendra, CSK Himachal Pradesh Krishi Vishvavidyalaya, Bajaura, Kullu, Himachal Pradesh - 175 125, India
²Department of Vegetable Science, G B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
KC Sharma (✉) E mail: keycsharma@yahoo.com
GUIDELINES FOR AUTHORS

Journal of Hill Agriculture (JHA) is an international journal and an official publication of Indian Society of Hill Agriculture (ISHA). It publishes the original research in all branches of agriculture and allied science (as mentioned below) that is of primary interest to the agricultural development, especially in hill and mountain regions of the world. The publication is open to the members of Indian Society of Hill Agriculture but it also accepts papers from non-members if all authors become the annual/life affiliation, Abstract, Key words, main text with subheadings, etc. Describe the publication, title of the article. (Smith 1979, Sharma et al. 2010). If there are more than two or more references mentioned together in one bracket they should be written in chronological order.

MAJOR FIELDS/SUBJECTS COVERED UNDER JHA

a) Plant Improvement with reference to genetics, plant breeding, production, cytogenetics, physiology, biotechnology and biochemistry of various crops including fruits, vegetables, flowers, medicinal plants and forest plants.
b) Plant Protection including entomology, plant pathology, nematology, microbiology and agro-chemicals
c) Soil, Water and Environmental Sciences including Natural Resource Management, Soil Sciences, Water Management, Environmental Sciences, Agronomy, Seed Science, Meteorology and Agroforestry.
d) Animal Sciences including Veterinary Science and Fishery
e) Agricultural Engineering including Farm machinery, Soil & Water Conservation Engineering, Energy Management, Postharvest Technology, Food Technology and Dairy Processing
f) Social Sciences including Statistics, Economics, Extension, Home Sciences, Nutrition, Research Management

TYPES OF ARTICLES PUBLISHED IN JHA

a. Strategy paper. These papers are invited exclusively by invitation from the personalities of eminence to give their opinion on the trends of agricultural development and future of various sectors of agriculture and allied disciplines and related development issues all over the world especially in hill and mountain regions.
b. Review paper: It should be comprehensive, critical and updated on a recent topic of importance. The maximum page limit is of 14 double spaced typed pages including Tables and Figures. It should cite latest references and identify some gaps for future. It should have a specific Title followed by the Name(s) of the author(s), Affiliation, Abstract, Key words, main text with subheadings, Acknowledgements (wherever applicable) and References.
c. Research paper. The paper should describe a new and confirmed findings. Should not generally exceed 12 typed pages including Tables/Figures etc. A paper has the following features. Please consult previous issues of JHA for your reference and help.
 ● Title followed by author (s) and affiliation: address of the institution (s) where the research was undertaken and e mail address of corresponding author.
 ● Abstract: Entire work along with the highlights of the findings must be given concisely in 200 to 300 words.
 ● Key words: About 5-6 keywords to be indicated.
 ● Introduction: This must highlight importance of the problem and its relevance to hill agriculture including pervious work done and gaps thereof.
 ● Materials and Methods: Describe the materials used in the experiments, year of experimentation, site etc. Describe the methods employed for collection and analysis of data in short.
 ● Results and Discussion: This segment should focus on the fulfillment of stated objectives as given in the introduction and contain findings presented in Tables, Figures and photographs. Data should be statistically analyzed following suitable experimental design. Same data should not be presented in the table and figure form. Avoid use of numerical values in findings, rather mention the trends and discuss with the available literatures. At the end give short conclusion.
 ● Acknowledgements: (wherever applicable).
 ● References: Reference to literature should be arranged alphabetically as per author's names, should be placed at the end of the article. Each reference should contain the names of the author with initials, the year of the publication, title of the article, the abbreviated title of the publication according to the World List of Scientific Periodicals, volume and page(s). In the text, the reference should be indicated by authors' name and year of publication in brackets, e.g. (Smith 1979, Sharma and Nautiyal 2009, Raghav et al. 2010). If there are more than two or more references mentioned together in one bracket they should be written in chronological order.
d. Short communication: The text including Table(s) and Figure(s) should not exceed 5 pages. It should have a short title, followed by name of author(s) and affiliation and References. There should be no subheadings, i.e. Introduction, Materials and Methods etc. The manuscript should be in paragraphs mentioning the brief introduction of the of the topic and relevance of the work, followed by
a short description of the materials and the methods employed, results and discussion based on the data presented in 1 or 2 table(s)/figure(s) and a short conclusion at the end. References should be maximum seven at the end.

STANDARD REFERENCE WRITING PATTERN FOR JHA

Research and Review Papers

Books and Book Chapters

Symposium / Seminar/ Conference Publications

Patent

Thesis

Website

General instructions to the authors
- All the manuscript should be typed double spaced on one side of A4 size paper with proper margin of 1 inch on all 4 sides.
- Generic & specific names should be italicized throughout manuscript. Similarly, the vernacular/local names are to be italicized.
- Tables should be typed on separate sheets, each with a heading. Tables should be typed with the first letter (T) only capital. All Tables and Figures should be properly numbered. All measurements should be in metric units.
- Each illustration must be referred to in the text.
- On the first page address of the corresponding author and E-mail Id. etc. may be specified.
- Revised manuscript is acceptable only as soft copy (attached file in MS Word) of the corrected version through e mail sent to Editor-in-Chief.
- The paper after publication shall be sent as pdf file version of the whole issue of the journal to the authors.
- Article forwarded to the Editor-in-Chief for publication is understood to be offered to JOURNAL OF HILL AGRICULTURE exclusively and not for any other journal.
- It is also understood that the authors have obtained a prior approval of their Department, Faculty or Institute in case where such approval is a necessary.
- Acceptance of a manuscript for publication in Journal of Hill Agriculture shall automatically mean transfer of copyright to the Indian Society of Hill Agriculture. The authors shall also have to provide a copy of the Copyright Transfer Statement duly signed by all or the corresponding author on behalf of all the authors.
- The Editorial Board takes no responsibility for the fact or the opinion expressed in the Journal, which rests entirely with the author(s) thereof.
- All the authors of a paper have to become annual/life member of the ISHA for publication of paper.
- All papers should be sent to Editor-in-Chief, Journal of Hill Agriculture, through e mail as attached file to editorinchiefjha@gmail.com

Check List
1. Complete manuscript in MS Word format
2. Names and details (including complete postal address alongwith Phone No. and e mail) of at least three potential referees who might be interested to review your paper. The format for the same may be downloaded from ISHA website Visit http://www.ishaindia.in/JHA%20Format%20for%20suggesting%20Potential%20Referees%20names.doc
3. Copyright transfer statement on separate page
4. Membership Number (if fee is paid already)/ Membership fee
COMMON ABBREVIATIONS USED IN JHA

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>above mean sea level</td>
<td>above mean sea level (amsl)</td>
</tr>
<tr>
<td>at the rate</td>
<td>@</td>
</tr>
<tr>
<td>centimeter, centimeter</td>
<td>cm</td>
</tr>
<tr>
<td>degree centigrade</td>
<td>°C</td>
</tr>
<tr>
<td>et cetera, et coetera or et catere</td>
<td>etc</td>
</tr>
<tr>
<td>examples gratia</td>
<td>e.g.</td>
</tr>
<tr>
<td>Figure</td>
<td>Fig</td>
</tr>
<tr>
<td>Gram</td>
<td>g</td>
</tr>
<tr>
<td>Hectare</td>
<td>ha</td>
</tr>
<tr>
<td>hour(s)</td>
<td>hr</td>
</tr>
<tr>
<td>international unit</td>
<td>I</td>
</tr>
<tr>
<td>it is or that is</td>
<td>i.e.</td>
</tr>
<tr>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>kilometer, kilometre</td>
<td>km</td>
</tr>
<tr>
<td>lesser than, greater than</td>
<td><, ></td>
</tr>
</tbody>
</table>

Abbreviations for citing references

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Abstr</td>
</tr>
<tr>
<td>Academy</td>
<td>Acad</td>
</tr>
<tr>
<td>Acta</td>
<td>Acta</td>
</tr>
<tr>
<td>Advances</td>
<td>Adv</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Agr</td>
</tr>
<tr>
<td>Agricultural</td>
<td>Agrl</td>
</tr>
<tr>
<td>Agronomy</td>
<td>Agron</td>
</tr>
<tr>
<td>America, -an</td>
<td>Amer</td>
</tr>
<tr>
<td>Analytical, Analysis</td>
<td>Anal</td>
</tr>
<tr>
<td>Annals</td>
<td>Ann</td>
</tr>
<tr>
<td>Animal</td>
<td>Animal</td>
</tr>
<tr>
<td>Annual</td>
<td>Annu</td>
</tr>
<tr>
<td>Applied</td>
<td>Appl</td>
</tr>
<tr>
<td>Asian</td>
<td>Asian</td>
</tr>
<tr>
<td>Archives</td>
<td>Arch</td>
</tr>
<tr>
<td>Associate(s), -ed</td>
<td>Assoc</td>
</tr>
<tr>
<td>Association</td>
<td>Assn</td>
</tr>
<tr>
<td>Australian</td>
<td>Austral</td>
</tr>
<tr>
<td>Austrian</td>
<td>Aust</td>
</tr>
<tr>
<td>Beverage</td>
<td>Bev</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Biochem</td>
</tr>
<tr>
<td>Biology</td>
<td>Biol</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>Biotechnol</td>
</tr>
<tr>
<td>Botany</td>
<td>Bot</td>
</tr>
<tr>
<td>Breeding</td>
<td>Breeding</td>
</tr>
<tr>
<td>British, Britain</td>
<td>Brit</td>
</tr>
<tr>
<td>Bulletin</td>
<td>Bul</td>
</tr>
<tr>
<td>Bureau</td>
<td>Bur</td>
</tr>
<tr>
<td>Canada, -ian</td>
<td>Can</td>
</tr>
<tr>
<td>Center, Centre</td>
<td>Ctr</td>
</tr>
<tr>
<td>Chemical</td>
<td>Cheml</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chem</td>
</tr>
<tr>
<td>Circular</td>
<td>Circ</td>
</tr>
<tr>
<td>Congress</td>
<td>Congr</td>
</tr>
<tr>
<td>Contribution(s)</td>
<td>Contrib</td>
</tr>
<tr>
<td>Conservation</td>
<td>Conserv</td>
</tr>
<tr>
<td>Cooperative</td>
<td>Coop</td>
</tr>
<tr>
<td>Culture</td>
<td>Cult</td>
</tr>
<tr>
<td>Current</td>
<td>Curr</td>
</tr>
<tr>
<td>Cytology, -ical</td>
<td>Cytol</td>
</tr>
<tr>
<td>Department</td>
<td>Dept</td>
</tr>
<tr>
<td>Development</td>
<td>Dev</td>
</tr>
<tr>
<td>Digest</td>
<td>Dig</td>
</tr>
<tr>
<td>Disease</td>
<td>Dis</td>
</tr>
<tr>
<td>Dissertation</td>
<td>Diss</td>
</tr>
<tr>
<td>Distribution</td>
<td>Distrib</td>
</tr>
<tr>
<td>Division</td>
<td>Div</td>
</tr>
<tr>
<td>Ecology, -ical</td>
<td>Ecol</td>
</tr>
<tr>
<td>Ecosystem(s)</td>
<td>Ecosyst</td>
</tr>
<tr>
<td>Economy, -ic, -ics</td>
<td>Econ</td>
</tr>
<tr>
<td>Education</td>
<td>Educ</td>
</tr>
<tr>
<td>Egypt</td>
<td>Egypt</td>
</tr>
<tr>
<td>Egyptian</td>
<td>Egyptn</td>
</tr>
<tr>
<td>Electronic</td>
<td>Electronic</td>
</tr>
<tr>
<td>Encyclopedia</td>
<td>Encycl</td>
</tr>
<tr>
<td>Engineers, -ring</td>
<td>Eng</td>
</tr>
<tr>
<td>Enology</td>
<td>Enol</td>
</tr>
<tr>
<td>Entomology, -ical</td>
<td>Entomol</td>
</tr>
<tr>
<td>Environment</td>
<td>Environ</td>
</tr>
<tr>
<td>Environmental</td>
<td>Environl</td>
</tr>
<tr>
<td>Enzyme (s)</td>
<td>Enzym</td>
</tr>
<tr>
<td>Enzymology</td>
<td>Enzymol</td>
</tr>
<tr>
<td>Experiment</td>
<td>Expt</td>
</tr>
<tr>
<td>Experimental</td>
<td>Exptl</td>
</tr>
<tr>
<td>Microscopy</td>
<td>Microsc</td>
</tr>
<tr>
<td>Molecule, ar</td>
<td>Mol</td>
</tr>
</tbody>
</table>
REFEREES OF JOURNAL OF HILL AGRICULTURE, 2013 Vol 4(1)

- Dr AK Joshi, RHRS, Dhaulakuan, Himachal Pradesh
- Dr AK Pandey, GBPUAT, Pantnagar
- Dr Alkesh Kandoria, PSCST, Chandigarh
- Dr Anil Dixit, CIPHET Ludhiana
- Dr Anil Kumar GBPUAT Pantnagar
- Dr Ashok Thakur, Dr YS Parmar Univ. Horticulture and Forestry, Solan, Himachal Pradesh
- Dr B L Attri, CITH, Mukteshwar, Urratakhand
- Dr Birendra Prasad. GBPUAT Pantnagar
- Dr Deepji Bhat, SKUAST, Jammu
- Dr Faizan Ahmed, SKUAST (K) Kargil, Jammu and Kashmir
- Dr KC Sharma, CSKHPKVV, Kullu, Himachal Pradesh
- Dr Lakshmikant Sharma, KVK, Bajaura, Kullu, HP
- Dr Manisha Mangal, IARI, New Delhi
- Dr Om Chand Sharma, CITH, Srinagar, J&K
- Dr Rakesh Sharma, Solan Himachal Pradesh
- Dr Rashmi Yadav, NBPGR, New Delhi
- Dr Sangita Bansal, CIPHET Ludhiana
- Dr Sanjay Srivastava, GBPUAT Pantnagar
- Dr Sanjeev Sharma, Central Potato Research Institute, Shimla, Himachal Pradesh
- Dr Shachi Shah, IGNOU, New Delhi
- Dr SK Maurya, GBPUAT Pantnagar
- Dr Vijay Yadav IGFRI, Jhansi, Uttar Pradesh
- Dr Vinod Sharma, Katrain, Kullu, Himachal Pradesh
- Dr VK Rao, GBPUAT, Pantnagar
COPYRIGHT TRANSFER AGREEMENT

Journal Name: JOURNAL OF HILL AGRICULTURE (Print ISSN 0976-7606, Online ISSN 2230-7338)

Please provide us with the following information, review our policies, and confirm your acceptance of the terms of the attached article publishing agreement by signing this form, with respect to the following work submitted to Journal of Hill Agriculture.

Manuscript Title: ...
...
...

Author(s): ...
...
...

ASSIGNMENT OF PUBLISHING RIGHTS
I/ we hereby assign to Indian Society of Hill Agriculture, the copyright in the above specified manuscript in all forms and all media (whether known at this time or developed at any time in the future) throughout the world, in all languages, for the full term of copyright, to take effect if and when the article is accepted for publication. If I am one of the several co-authors, I hereby confirm that I am authorized by all of my co-authors to grant this licence as their agent, on their behalf. This assignment also includes the rights to supply the article in electronic and online forms and systems. I/we confirm that I/we have read and accept the full terms of the Journal's article publishing agreement attached to this form including my author warranties, and have reviewed the Journal's policies on Author Rights.
I/We hereby confirm the assignment of all copyrights in and to the manuscript named above in all forms and media to the publishers of the journal namely, Indian Society of Hill Agriculture, effective if and when it is accepted for publication by the Editor-in-Chief of the journal.

Date:

Author(s) / Corresponding author
Name and signature

Please return only this page, completed and signed by postal mail or a scanned copy by email to editorinchiefjha@gmail.com. This form will be retained by ISHA (JHA) for administrative purposes.
MEMBERSHIP OF INDIAN SOCIETY OF HILL AGRICULTURE

Membership of the society shall be open to individuals from all nations and shall consist of the following categories of members with qualifying criteria as indicated against each. Membership can be obtained by filling a membership form and sending it to editorinchiefjha@gmail.com along with membership fee (effective from 1st Jan, 2011) as detailed ahead

(i) Ordinary Members (annual Membership)
This membership shall be offered to the individuals interested in promotion of Hill Agriculture and its allied branches. This shall also be the minimum fee to be deposited per author for getting a paper published, in case it is accepted for publication. There shall be an annual fee of ₹ 500/- for individuals from all SAARC countries including India and US $ 30 for individuals from rest of the nations. Year shall be counted w.e.f. January 1 to December 31 of each year. If somebody deposits fee in October 2010 it shall be counted only for that year i.e. 2010.

(ii) Life Members (continuing Membership)
There shall be a one time life membership fee ₹ 3,000/- for individuals from all SAARC countries including India and US $ 200 for individuals from rest of the nations.

(iii) Patrons (continuing Membership)
Any individual or institution making a payment of a substantial sum (as may be prescribed by the Executive Council from time to time).

(iv) Subscribers
Any corporate body / institution / library / association of persons can subscribe Journal of Hill Agriculture by making an annual payment of ₹ 1,500/- for all SAARC countries including India and US $ 100 for rest of the nations.

Summary

<table>
<thead>
<tr>
<th>Type of membership</th>
<th>Fee for SAARC countries</th>
<th>Fee for rest of the nations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual member</td>
<td>₹ 500/- per year</td>
<td>US $ 30 per year</td>
</tr>
<tr>
<td>Life member</td>
<td>₹ 3,000/- (one time)</td>
<td>US $ 200 (one time)</td>
</tr>
<tr>
<td>Subscriber (organization) member</td>
<td>₹ 1,500/- per year</td>
<td>US $ 100 per year</td>
</tr>
</tbody>
</table>

The membership fee can be deposited by any of the two methods as detailed below:

1. Through Bank Draft: May remitted through demand draft drawn in favour of INDIAN SOCIETY OF HILL AGRICULTURE payable at SBI Branch CHAMBA (Uttarakhand), Branch Code: 6534. The draft may be sent to the Editor-in-Chief Journal of Hill Agriculture through registered post only along with duly filled membership form which can be downloaded from our website.

2. By Direct Deposit into ISHA's Bank Account: Membership fee i.e. ₹ 3000/- or ₹ 500/- or ₹ 1500/- as the case may be, plus ₹ 50/- (as bank charges) amounting to ₹ 3050/- or ₹ 550/- or ₹ 1550/- respectively, may also be directly deposited into the Bank Account of Indian Society of Hill Agriculture. The details are given as follows
 Name of Bank: State Bank of India
 Name of Branch: Chamba (Uttarakhand)
 Branch Code: 6534
 For NEFT/RTGS Transfer IFSC Code SBIN 000 6534
 Name of Account Holder: Indian Society of Hill Agriculture
 Account No.: 3119 0343 798

Important Note: If you directly deposit the fee into ISHA’s account please do not forget to send your duly filled (i) duly signed membership form, (ii) bank transaction Id (iii) scanned copy of stamped deposit slip (counter foil). The information may be sent by e-mail to editorinchiefjha@gmail.com
MEMBERSHIP FORM

1. Name (in CAPITAL letters) : Dr/ Mr/ Ms ...
2. Date of Birth: ..
3. Designation / Job Title: ..
4. Specialization: ..
5. Institute / Organization where employed: ...

6. Address for Correspondence: ..
.. Pin
..
Phone: Fax:................................. E mail:.........................

7. Permanent Home Address: ..
.. Pin
..
Phone: Fax:................................. E mail:.........................

8. Academic and Professional Qualifications:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Name of University</th>
<th>Year</th>
<th>Major Field of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Category of membership (please tick)
 (i) Life member (ii) Annual member (iii) Organization/ Subscriber member

10. Payment of membership fee in (Rs) ... By direct deposit in ISHA
 account / Online transfer to vide transaction No. dated:

 Note: Fee deposited by any other mode will not be accepted.

DECLARATION

I wish to become the life/ annual/ subscriber member of the Indian Society of Hill Agriculture and
if enrolled agree to abide by the rules and regulations of the society.

Date: Signature:..
Place: Name: ..
CONTENTS

Baculovirus biopesticides - an ecofriendly approach for insect-pest management
DINESH RAI • GEETA SHARMA • AK PANDEY
1-7

Morphological variability pattern of Sri Lankan weedy rice - an ecological appraisal
APT SUBHASI • DISNA RATNASEKERA • UIP PERERA
8-15

Standardization of recipe for the preparation of dried wild pomegranate (anardana)-long gourd appetizer
M M BHAT • NSTHAKUR • RAKESH SHARMA
16-21

Pollination studies in some promising plum cultivars under mid hills of Uttarakhand
ABDUL KAREEM • DC DIMRI
22-27

Effect of mulching on strawberry production under mid hill conditions of Uttarakhand
NN PATIL • VK RAO • DC DIMRI
28-32

Impact of front line demonstration on replacement of indigenous cultivar with improved variety of barnyard millet
AK SHARMA • SUCHETA SINGH
33-38

Seed germination and seedling growth of wheat and barley on influenced by the allelopathic effect of walnut (Juglans regia L.) leaf extracts under mid hills of Uttarakhand agri-silvi system
BIRENDRA PRASAD • ABHISHEK BAHUGUNA • RAM JIMAURYA • SANDHYA BAHUGUNA
39-43

Correlation and path coefficient analysis of yield and yield components of Indian mustard (Brassica juncea L.)
SHWETA
44-46

Genetic variability study in bacterial wilt resistant F6 progenies of tomato (Solanum lycopersicum L.)
SANJAY CHADHA • AMIT BHUSHAN
47-49

Physico-chemical characteristics of buransh (Rhododendron arboreum) - a nutritious and edible flower
SN SOLANKI • AK HURIA • CS CHOPRA
50-52

Acridity reduction and value addition of elephant foot yam grown in Bilaspur district of Himachal Pradesh
RAVINDER SINGH • YS DHALIWAL • REENA KAUSHAL
53-55

Response of bio-fertilizers and NPK levels on the growth and yield of garlic in north western Himalayas
KC SHARMA • LK SHARMA • AK SHARMA • VINOD SHARMA
56-59

Guidelines for authors
i
Common abbreviations used in JHA
iii
Abbreviations used for citing references
iii
Referees of JHA 2013 Vol 4(1)
v
Copyright Transfer Statement
vi
Membership of ISHA
vii